Course Type	rpe Course Code Name of Course		L	Т	Р	Credit
DC	NCYC506	Computer Aided Drug Design	3	1	0	4

• Introduction to different computational methods for drug discovery and development.

Course Objective

Learning Outcomes

i • 7 (identification and validation To be well equipped with of modern cheminformatics and bioinformatics approaches including QSAR, pharmacophore modelling, molecular docking, Protein structure prediction etc. 							
Uni t No.	Topics to be Covered	Lecture Hours	Learning Outcome					
1	Steps in drug discovery, target identification and lead identification, drugs and drug database, issues in drug discovery, drug likeness-properties of drugs, pharmacokinetics and pharmacodynamics, importance of drug solubility and permeability, Drug ADME, toxicity of drugs, brief introduction to bioinformatics, cheminformatics, and their relation to drug design.	10L+3T	Overview of various stages of drug discovery and the important properties to be investigated during drug design in computational studies					
2	Molecular modelling, molecular dynamics simulations, ensembles, potential energy surface, force field methods , energy minimization, geometry optimization , conformational analysis , global conformational minima determination , approaches and problems , Bioactive Vs global minimum conformations , Automated methods of conformational search , Dynamics of drugs , biomolecules drug-receptor complexes, Estimation of free energy and other properties from simulations	11L+4T	Learn different steps involved in protein structure prediction and molecular dynamics simulations with hands-on experience.					
3	Protein-ligand docking, types of docking: rigid docking and flexible docking, manual docking; algorithms involved in docking and docking score calculations, Advantages and disadvantages of various docking softwares	11L+4T	Discussion on various docking methods and in-hand experience of docking methods with model systems.					
	Qualitative versus quantitative approaches- advantages and disadvantages ; Random screening , Non-random screening, Insights		Learn about different screening techniques and various ligand based drug design methods					

10L+3T

mapping.

into molecular recognition phenomenon,

Structure based drug design, ligand-based

QSAR: Electronic effects Hammett equation, Lipophilicity effects; Hansch equation, Steric

pharmacophore

4

drug design,

Effects; 2D-QSAR; 3D-QSAR		
Total	42L+14T	

Text Books:

1) Computational Drug Design: A Guide for Computational and Medicinal Chemists, D. C. Young, Wiley-Blackwell, ISBN: 978-0470126851, 2009.

Reference Books:

- 1) Understanding Molecular Simulations: From Algorithms to Applications, D. Frenkel and B. Smit, Academic Press, 2002.
- 2) Molecular modeling Principles and Applications. A. R. Leach. Pearson, ISBN-13: 978-0582382107, 2001.
- 3) An Introduction to Cheminformatics, A. R. Leach., Springer, ISBN: 978-1-4020-6291-9, 2007.
- 4) In Silico Drug Discovery and Design: Theory, Methods, Challenges, and Applications. C. N. Cavasotto, CRC Press, ISBN: 978-1138747586, 2017.